Skip to main content

Home/ Dr. Goodyear/ Group items tagged Down Syndrome Types

Rss Feed Group items tagged

fnfdoc

Down Syndrome: Symptoms, Types & Treatment | Health Blog - 0 views

  •  
    Down syndrome is also known as DS or DNS. This is a genetic disorder. Our human body is made of millions of cells.
Nathan Goodyear

The role of short-chain fatty acids in the interplay between diet, gut microbiota, and ... - 0 views

  • Acetate, propionate, and butyrate are present in an approximate molar ratio of 60:20:20 in the colon and stool
  • SCFAs might play a key role in the prevention and treatment of the metabolic syndrome, bowel disorders, and certain types of cancer
  • SCFA administration positively influenced the treatment of ulcerative colitis, Crohn's disease, and antibiotic-associated diarrhea
  • ...16 more annotations...
  • Gut bacteria in the cecum and large intestine produce SCFAs mainly from nondigestible carbohydrates that pass the small intestine unaffected
  • plant cell-wall polysaccharides, oligosaccharides, and resistant starches
  • inulin shifted the relative production of SCFAs from acetate to propionate and butyrate
  • age of approximately 3–4 years, when it becomes mature
  • SCFAs affect lipid, glucose, and cholesterol metabolism
  • colonocytes, the first host cells that take up SCFAs and which depend largely on butyrate for their energy supply
  • the microbiota educate the immune system and increase the tolerance to microbial immunodeterminants
  • the microbiota act as a metabolic organ that can break down otherwise indigestible food components, degrade potentially toxic food compounds like oxalate, and synthesize certain vitamins and amino acids
  • a large part of the SCFAs is used as a source of energy
  • The general idea is that colonocytes prefer butyrate to acetate and propionate, and oxidize it to ketone bodies and CO2
  • Exogenous acetate formed by colonic bacterial fermentation enters the blood compartment and is mixed with endogenous acetate released by tissues and organs (103, 104). Up to 70% of the acetate is taken up by the liver (105), where it is not only used as an energy source, but is also used as a substrate for the synthesis of cholesterol and long-chain fatty acids and as a cosubstrate for glutamine and glutamate synthesis
  • SCFAs regulate the balance between fatty acid synthesis, fatty acid oxidation, and lipolysis in the body.
  • Fatty acid oxidation is activated by SCFAs, while de novo synthesis and lipolysis are inhibited
  • obese animals in this study showed a 50% reduction in relative abundance of the Bacteroidetes (i.e., acetate and propionate producers), whereas the Firmicutes (i.e., butyrate producers) were proportionally increased compared with the lean counterparts.
  • increase in total fecal SCFA concentrations in obese humans.
  • In humans the distinct relation between the Firmicutes:Bacteroidetes ratio and obesity is less clear.
  •  
    Great review of the role of SCFA in gut health and body metabolism
Nathan Goodyear

PLOS ONE: Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular ... - 0 views

  • Studies in both humans and rodents, however, suggest that low testosterone is due to age-related lesions in testes rather than irregular luteinizing hormone metabolism
  • Various dietary factors and diet-induced obesity have been shown to increase the risk for late onset male hypogonadism and low testosterone production in both humans and mice
  • Testosterone deficiency and metabolic diseases such as obesity appear to inter-digitate in complex cause-and-effect relationships
  • ...28 more annotations...
  • dietary supplementation of aged mice with the probiotic bacterium Lactobacillus reuteri makes them appear to be younger than their matched untreated sibling mice
  • These results indicate that gut microbiota induce modulation of local gastrointestinal immunity resulting in systemic effects on the immune system which activate metabolic pathways that restore tissue homeostasis and overall health
  • all these studies we consistently observed that young and aged mice consuming purified L. reuteri organisms had particularly large testes and a dominant male behavior.
  • The testes of probiotic-fed aged mice were rescued from both seminiferous tubule atrophy and interstitial Leydig cell area reduction typical of the normal aging process. Preservation of testicular architecture despite advanced age or high-fat diet coincided with remarkably high levels of circulating testosterone. The beneficial effects of probiotic consumption were recapitulated by the depletion of the pro-inflammatory cytokine Il-17.
  • feeding of L. reuteri consistently increased the gonadal weights, consumption of a non-pathogenic strain of Escherichia coli (E. coli) K12 organisms did not affect testicular weight
  • mice with dietary L. reuteri supplements were rescued from diet-induced obesity and had normal body weight and lean physique
  • Despite the comparable numbers of ST profiles, we determined that testes from L. reuteri-treated mice had increased ST cross-sectioned profiles
  • the probiotic organism induced prominent Leydig cell accumulations in the interstitial tissue between the ST's
  • The probiotic-associated increase of interstitial Leydig cell areas was sustained with advancing age at 7 (CD vs CD+LR, P = 0.0025; CD+E.coli vs CD+LR, P = 0.0251) and 12 months
  • mice eating L. reuteri had profoundly increased levels of circulating testosterone regardless of the type of diet they consumed
  • blocking pro-inflammatory Il-17 signaling entirely recapitulates the beneficial effects of probiotics
  • previous studies we found that dietary probiotics counteract obesity [19] and age-related integumentary pathology [18] at least in part by down-regulating systemic pro-inflammatory IL-17A-dependent signaling
  • Testes histomorphometry and serum androgen concentration data were both suggestive of a probiotic-associated up-regulation of spermatogenesis in mice
  • Lactobacillus reuteri we discovered that aging male animals had larger testes compared to their age-matched controls
  • xamined testes of probiotic microbe-fed mice and found that they had less testicular atrophy coinciding with higher levels of circulating testosterone compared to their age-matched controls
  • Similar testicular health benefits were produced using systemic depletion of the pro-inflammatory cytokine Il-17 alone, implicating a chronic inflammatory pathway in hypogonadism
  • One specific aspect of this paradigm is reciprocal activities of pro-inflammatory Th-17 and anti-inflammatory Treg cells
  • Feeding of L. reuteri organisms was previously shown to up-regulate IL-10 levels and reduce levels of IL-17 [19] serving to lower systemic inflammation
  • insufficient levels of IL-10 may increase the risk for autoimmunity, obesity, and other inflammatory disease syndromes
  • Westernized diets are also low in vitamin D, a nutrient that when present normally works together with IL-10 to protect against inflammatory disorders
  • Physiological feedback loops apparently exist between microbes, host hormones, and immunity
  • The hormone testosterone has been shown to act directly through androgen receptors on CD4+ cells to increase IL-10 expression
  • studies in both humans and rodents suggest that hypogonadism is due to age-related lesions in testes rather than irregular LH metabolism
  • We postulate that probiotic gut microbes function symbiotically with their mammalian hosts to impart immune homeostasis to maintain systemic and testicular health [34]–[35] despite suboptimal dietary conditions.
  • Dietary factors and diet-induced obesity were previously shown to increase risk for age-associated male hypogonadism, reduced spermatogenesis, and low testosterone production in both humans and mice [2]–[4], [8]–[11], [14]–[17], phenotypic features that in this study were inhibited by oral probiotic therapy absent milk sugars, extra protein, or vitamin D supplied in yogurt.
  • Similar beneficial effects of probiotic microbes on testosterone levels and sperm indices were reported in male mice that had been simultaneously supplemented with selenium
  • L. reuteri-associated prevention of age- and diet-related testicular atrophy correlates with increased numbers and size of Leydig cells
  • the initial changes of testicular atrophy begin to occur in mice from the age of 6 moths onwards [7] and indicates that the trophic effect of L. reuteri on Leydig cells is a key event which precedes and prevents age-related changes in the testes of mice. This effect is reminiscent of earlier studies describing Leydig cell hyperplasia and/or hypertrophy in the mouse and the rat testis that were achievable by the administration of gonadotropins, including human chorionic gonadotropin, FSH and LH
  •  
    Fascinating study on how the addition of Lactobacillus reuteri increased Testicular size, prevented testicular atrophy, increased serum Testosterone production and protected against diet-induced/obesity-induced hypogonadism.  This was a mouse model
Nathan Goodyear

Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Dis... - 0 views

  • The gut microbiota participates in the body’s metabolism by affecting energy balance, glucose metabolism, and low-grade inflammation associated with obesity and related metabolic disorders
  • Firmicutes and Bacteroidetes represent the two largest phyla in the human and mouse microbiota and a shift in the ratio of these phyla has been associated with many disease conditions, including obesity
  • In obese humans, there is decreased abundance of Bacteroidetes compared to lean individuals
  • ...21 more annotations...
  • weight loss in obese individuals results in an increase in the abundance of Bacteroidetes
  • there is conflicting evidence on the composition of the obese microbiota phenotype with regards to Bacteroidetes and Firmicutes ratios
  • Bifidobacteria spp. from the phyla Actinobacteria, has been shown to be depleted in both obese mice and human subjects
  • While it is not yet clear which specific microbes are inducing or preventing obesity, evidence suggests that the microbiota is a factor.
  • targeted manipulation of the microbiota results in divergent metabolic outcomes depending on the composition of the diet
  • The microbiota has been linked to insulin resistance or type 2 diabetes (T2D) via metabolic syndrome and indeed the microbiota of individuals with T2D is also characterized by an increased Bacteroidetes/Firmicutes ratio, as well as an increase in Bacillus and Lactobacillus spp
  • It was also observed that the ratio of Bacteriodes-Prevotella to C. coccoides-E. rectale positively correlated with glucose levels but did not correlate with body mass index [80]. This suggests that the microbiota may influence T2D in conjunction with or independently of obesity
  • In humans, high-fat Western-style diets fed to individuals over one month can induce a 71% increase in plasma levels of endotoxins, suggesting that endotoxemia may develop in individuals with GI barrier dyfunction connected to dysbiosis
  • LPS increases macrophage infiltration essential for systemic inflammation preceding insulin resistance, LPS alone does not impair glucose metabolism
  • early treatment of dysbiosis may slow down or prevent the epidemic of metabolic diseases and hence the corresponding lethal cardiovascular consequences
  • increased Firmicutes and decreased Bacteroidetes, which is the microbial profile found in lean phenotypes, along with an increase in Bifidobacteria spp. and Lactobacillus spp
  • mouse and rat models of T1D have been shown to have microbiota marked by decreased diversity and decreased Lactobacillus spp., as well as a decrease in the Firmicutes/Bacteroidetes ratio
  • microbial antigens through the innate immune system are involved in T1D progression
  • The microbiota appears to be essential in maintaining the Th17/Treg cell balance in intestinal tissues, mesenteric and pancreatic lymph nodes, and in developing insulitis, although progression to overt diabetes has not been shown to be controlled by the microbiota
  • There is evidence that dietary and microbial antigens independently influence T1D
  • Lactobacillus johnsonii N6.2 protects BB-rats from T1D by mediating intestinal barrier function and inflammation [101,102] and a combination probiotic VSL#3 has been shown to attenuate insulitis and diabetes in NOD mice
  • breast fed infants have higher levels of Bifidobacteria spp. while formula fed infants have higher levels of Bacteroides spp., as well as increased Clostridium coccoides and Lactobacillus spp
  • the composition of the gut microbiota strongly correlates with diet
  • In mice fed a diet high in fat, there are many key gut population changes, such as the absence of gut barrier-protecting Bifidobacteria spp
  • diet has a dominating role in shaping gut microbiota and changing key populations may transform healthy gut microbiota into a disease-inducing entity
  • “Western” diet, which is high in sugar and fat, causes dysbiosis which affects both host GI tract metabolism and immune homeostasis
  •  
    Nice discussion of how diet, induces gut bacterial change, that leads to metabolic endotoxemia and disease.
1 - 4 of 4
Showing 20 items per page